5 research outputs found

    Mercury flux to sediments of Lake Tahoe, California-Nevada

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Water, Air, & Soil Pollution 210 (2010): 399-407, doi:10.1007/s11270-009-0262-y.We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California-Nevada: 2 and 15-20 µg/m2/yr in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5-10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the value of 3 typically seen worldwide. We offer plausible hypotheses to explain the high flux ratios, including (1) proportionally less photoreduction and evasion of Hg with the onset of cultural eutrophication and (2) a combination of enhanced regional oxidation of gaseous elemental Hg and transport of the resulting reactive gaseous Hg to the surface with nightly downslope flows of air. If either of these mechanisms is correct, it could lead to local/regional solutions to lessen the impact of globally increasing anthropogenic emissions of Hg on Lake Tahoe and other alpine ecosystems.Funding was provided by Miami University, EPA-STAR, the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, and the USGS

    Diatom biodiversity in Mongolia: A new amphoroid diatom from saline lakes in western Mongolia, Amphora soninkhishigae sp. nov.

    Get PDF
    A new Amphora species, Amphora soninkhishigae sp. nov. is described from the saline lakes, Oigon Nuur and Uvs Nuur, in western Mongolia. Amphora soninkhishigae is characterized by its small size (valves 12–28 mm long, 2.9–3.8 mm wide), fine ornamentation, and a broad, internally thickened central area on the dorsal side of the valve (dorsal stauros) that branches along the dorsal margin. Among the amphoroid diatoms, Amphora soninkhishigae belongs in the subgenus Oxyamphora Cleve, where it is allied with other small Amphora taxa bearing a dorsal stauros including Amphora staurophora Juhlin- -Dannfelt, Amphora abludans Simonsen, Amphora laevissima var. perminuta Grunow, and Amphora laevis var. minuta Cleve

    Inferring lake depth using diatom assemblages in the shallow, seasonally variable lakes of the Nebraska Sand Hills (USA): Calibration, validation, and application of a 69-lake training set

    Get PDF
    The Nebraska Sand Hills are a distinctive eco-region in the semi-arid Great Plains of the western United States. The water table underlying the Sand Hills is part of the High Plains/ Ogallala aquifer, an important water resource for the central Great Plains. Lake levels are affected directly by fluctuations in the water table, which is recharged primarily by local precipitation and responds quickly to climatically induced changes in regional water balance. Instrumental records are available for only 50–100 years, and paleolimnological data provide important insights into the extremes and variability in moisture balance over longer time scales. A set of 69 lakes from across Nebraska was used to establish a statistical relationship between diatom community composition and water depth. This relationship was then used to develop a diatombased inference model for water depth using weighted averaging regression and calibration techniques. Development of the inference model was complicated by strong intra-seasonal variability in water depth and the linkages between depth and other limnologic characteristics, including alkalinity, water clarity and nutrient concentrations. Analysis of historical diatom communities from eight lakes allowed for the reconstruction of lake-level fluctuations over the past several thousand years. Comparisons of the more recent portion of these reconstructions with the instrumental Palmer Drought Severity Index (PDSI) showed that sediment records may not faithfully reflect short-term fluctuations in water level, except where sedimentation rates are very high. However, large and persistent changes in moisture availability were discernible even in longer, low-resolution records. Thus, diatoms are a useful addition to the tools available for understanding past drought in the central Great Plains, especially when trajectories of change are constrained by data from multiple sites or other proxies

    A regional-scale climate reconstruction of the last 4000 years from lakes in the Nebraska Sand Hills, USA

    Get PDF
    High-resolution paleohydrological reconstructions were carried out in five shallow lakes in the Nebraska Sand Hills across an east–west transect in order to 1) determine whether long-term droughts of the past 4000 years were spatially and temporally coherent across the region, 2) distinguish local variation in climate or hydrology from regional patterns of change, and 3) compare the paleolimnological results with the existing dune-inferred drought records. Diatom- inferred lake-level was reconstructed for all sites and compared with other regional records. Alterations between high and low lake-levels were frequent during the past 4000 years, which suggests that shifts between dry and wet periods were prevalent across the Sand Hills. Extended multi-decadal to centennial-scale droughts were more common prior to 2000 years BP, while the last two millennia were hydrologically more variable and climate conditions alternated on shorter timescales. Despite some discrepancies among the five records, the paleohydrological reconstructions refine the Holocene drought history of the Nebraska Sand Hills, particularly between ~2200 and 4000 cal a BP. Many of the observed drought events are contemporaneous with severe droughts documented at sites in the northern Great Plains and Rocky Mountains, lending support for the severity and regional significance of these events in western North America
    corecore